본문 바로가기
반응형

공대생을 위한 수학---------------------/미분형식3

미분형식 이해하기 (3) 전미분공식 유도 미분형식의 개념을 3차원으로 확장하면 이변수 함수의 전미분 공식이 유도됩니다. $z=f(x,y)$라는 곡면이 있다고 합시다. 이 곡면 위의 한 점 $P(a,b,c)$에서의 접선을 $\vec{v}$라고 놓겠습니다. $dx, dy, dz$를 정의할 건데요. 각각을 접선벡터 $\vec{v}$의 x,y,z 방향 성분으로 정의합시다. 이제 $dx,dy,dz$ 사이의 관계식을 구해볼겁니다. 점 P에서의 접평면의 방정식을 이용합시다. 점 P에서의 접평면의 방정식은 아래와 같습니다. $(z-a)=f_{x}(a,b)(x-a)+f_{y}(a,b)(y-b)$ 접평면 방정식의 유도는 링크를 참고하세요. 점 $(a+dx(\vec{v}),b+dy(\vec{v}),c+dz(\vec{v}))$ 는 벡터 $\vec{v}$의 종점이므로.. 2023. 2. 24.
미분형식 이해하기 (2) dx와 dy의 부활 2차원 평면에 어떤 함수 $y=f(x)$가 있다고 합시다. 이 함수 위의 한 점 $(x,f(x))$에서의 접선의 기울기는 $f'(x)$ 입니다. 이 접선과 방향이 같은 벡터를 $\vec{v}$라고 놓겠습니다. $\vec{v}$의 크기는 얼마이던 상관 없습니다. 이제 $dx$와 $dy$를 새롭게 정의해봅시다. $dx$를 $\vec{v}$의 x축 성분을 구하는 함수라고 정의합시다. $dy$를 $\vec{v}$의 y축 성분을 구하는 함수라고 정의합시다. 이렇게 정의하면 $\vec{v}$의 크기가 얼마건 아래 등식이 성립합니다. $dy=f'(x)dx$ 이제 $dy$와 $dx$를 각각 사용할 수 있게 되었습니다. 2023. 2. 21.
미분형식 이해하기 (1) dx와 dy의 문제점 라이프니츠는 $x$와 $y$의 아주 작은 증가량을 dx와 dy라는 기호를 이용하여 나타냈습니다. 함수 f(x)에서 dx와 dy의 관계는 아래와 같습니다. $dy=f(x+dx)-f(x)$ 라이프니츠는 dx와 dy를 무한히 작은 양이라는 의미인 무한소라고 가정합니다. 무한소를 이용하여 순간변화율을 아래와 같이 정의했습니다. $\frac{dy}{dx}$ 무한소를 0은 아니지만 어떤 수 보다도 작은 수라고 정의했습니다. 그런데 dy와 dx가 0보다 큰 값을 가지면 $\frac{dy}{dx}$은 순간변화율이 아니게 되는데 이러한 모순은 해결하지 않고 넘어갔습니다. 이후 실수체계가 확립되고 나서 무한소는 존재할 수 없다는 것이 밝혀졌습니다. 무한소를 수로 놓는 순간 0과 무한소 사이에 있는 또다른 수를 정의할 수 .. 2023. 2. 19.
반응형